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This project is about the development of high order, non-oscillatory type schemes for

computational fluid dynamics. Algorithm analysis, implementation, and applications are

performed. Collaborations with NASA scientists have been carried out to ensure that the

research is relevant to NASA objectives.

The combination of ENO finite difference method with spectral method in two space

dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the

two dimensional test problems with or without shocks.

Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral

approximations to discontinuous functions [2]. We proved theoretically the existence of

filters to recover spectral accuracy up to the discontinuity. We also constructed such filters

for practical calculations.

In [27], jointly with Zang, Erlebacher, Whitaker and Osher, we have applied ENO schemes

to two and three dimensional compressible Euler and Navier-Stokes equations of gas dynam-

ics. Practical issues, such as vectorization, efficiency of implementation, cost comparison

with other numerical reel, hods and accuracy degeneracy effects, are discussed. Numerical

examples include two and three dimensional compressible homogeneous turbulence, transi-

tion in a free shear layer, and shock interaction with two dimensional entropy and vorticity

waves. These cases all have the property that shocks and complicated flow structure co-exist,

hence non-oscillatory shock capturing and high order accuracy in the smooth part of the flow

are both important.

Jointly with Casper and Atkins, we have performed a comparison of the efficiency of the

two types of ENO schemes. In this paper we have explored the boundary treatment for high

order ENO schemes in two dimensional problems with a non-rectangular domain. Both wall

and inflow/outflow boundaries are considered. It is found out that careful treatment of dif-

ferent boundary conditions is essential for the realization of high order accuracy and s_ability

for such problems. We have also found out that the grid orientation effect, which is present

because of the dimension by dimension feature of the algorithm, is actually diminished with

the increase of order of accuracy and is, for the test problems we have Computed, negligible
for fourth order schemes.

Jointly with Perthame, we have studied positivity preserving finite volume schemes in

one and two space dimensions for arbitrary triangulations. The equations we solve are

Euler equations of compressible gas, and positivity is preserved for density and pressure.

Such schemes are weakly stable because, together with conservation, one can prove the L 1

boundedness of t,he density, momentums, and energy. Such positivity preserving schemes

also have practical advantages for solving problems near vacuum, for which often negative



density and pressureleadto instability. A generalfralnc'workand examplesare provided in
[23]

AmoHgfinite differencetechniquesfor flow calculationsis the classof compact schemes.
Compact schemesusually canbedesignedto havehigh (spectral like) resolution for various
wavesand are particularly suitable for long time calculation suchas direct numerical sim-
ulation of turbulence. In [5], Cockburn and Shu provided a framework to apply compact
schemesfor shockedor highgradientproblems.TVB compactschemesin 1Dand Loostable
schemesin two and higherdimensionsarediscussedand tested.

In [9], E and ShuadaptedENO methodologyto solveincompressibleflows and investi-
gated several resolutionissues.This is a generalizationof the secondorder Godunov type
methods usedby Bell, Colella and Glaz. The main difference from the compressible flow

is the presence of the incompressibility condition, which is a global condition and, if not

treated carefully, may affect local approximation performance. Although the work in [9]

is still preliminary (only periodic boundary conditions were considered, for which the in-

compressibility condition can be easily enforced with Fourier transform using the projection

method), it does provide the key evidence that the high order ENO methodology can be

applied to incompressible flow and has good resolution power for certain important physical

quantities.

The combination of applied analysis and direct numerical simulation to study physics

of fluids phenomena, is carried out jointly with E. We have studied the effective equations

and the inverse cascade of energy for the two dimensional Kolmogorov flow in [8], and the

small scale structure in Boussinesq convection in [10]. Typically, analysis (formal as well

as rigorous asymptotic analysis) is carried out as far as possible, while carefully designed

numerical simulation (often with the aid of partial result from analysis) is carried out to
continue the attack.

Jointly with Gottlieb, we have been systematically studying the issue of overcoming

the Gibbs phenomenon, i.e., to recover exponential accuracy from a spectral partial sum

of a piecewise analytic function. The prototype of recovering in an exponentia.lly accurate

fashion in the maximum norm, for the Fourier Galerkin case for an analytic but non-periodic

function, is given in [1:2]. This paper also sets up the framework for our future developments.

The resolution issues (number of points per wave) of using Fourier methods for an analytic

but non-periodic function is studied in [la]. The problem of recovering exponential a.ccura.cy

in a sub-interval, with the assumption that the function is analytic in this sub-inter'aal but

may have discontinuities at one or both boundary, both for the periodic (Fourier) and for

the non-periodic (Legendre and Ohebyshev) cases, is considered in [14]. The problem of

recovering exponential accuracy in a sub-interval, with the assumption that the function is

analytic in this sub-interval but may have discontinuities at one or both boundary, for general

Gegenbauer polynomial based Galerkin approximations, which includes the Chebyshev and

Legendre methods as special cases, is investigated in [1,5]. The problem for the collocation

case, which is more practical but the proof is much more dimcult and involves totally different

techniques than our proof for the Galerkin case, is contained in [16].

Jointly with Wong, we have performed a detailed numeeical study about numerical ac-



curacy when spectral method is appliedto a nonlinearconservationlaw with discontinuous
solutions [28]. Weassessthe accuracyof Fourier Galerkin and collocation method applied to
Burgersequation with smoothinitial condition but with a shockdevelopedin finite time. We
find that, unlike in the linear PI)E case,the momentswith respectto anMytic functions, in
particular the first few Fouriercoefficients,areno longervery accurate. Howeverthe numer-
ical solution doescontain accurateinformation which canbeextracted by a post-processing
basedon Gegenbauerpolynomials.

In [25], which results from an invited talk in the Third International Colloquium of

Numerical Analysis, we have compared ENO finite difference, finite volume and discontinuous

Galerkin finite element methods, in terms of their shock resolution, grid orientation effects,

cost, and ability to handle complicated geometry and boundary conditions.

Jointly with Harabetian and Osher, we have investigated a novel Eulerian approach for

simulating vortex motion using a level set regularization procedure [18]. Our approach uses

a decomposition of the vorticity of the form { = P(_o)r/, in which both _ (the level set

function) and 77 (the vorticity strength vector) are smooth. We derive coupled equations for

qo and r/which give a regularization of the problem. The regularization is topological and is

automatically accomplished through the use of numerical schemes whose viscosity shrinks to

zero with grid size. There is no need for explicit filtering, even when singularities appear in

the front. The method also has the advantage of automatically allowing topological changes

such as merging of surfaces. Numerical examples including two and three dimensional vortex

sheets, two dimensional vortex dipole sheets and point vortices, are given. To our knowledge,
this is the first three dimensional vortex sheet calculation in which the sheet evolution feeds

back to the calculation of the fluid velocity.

Jointly with Jiang, we have been investigating WENO (weighted ENO schemes) [22].

WENO is a modification and improvement of ENO schemes. Instead of using only one of

the many candidate stencils based on local smoothness as in ENO, WENO uses a linear

combination of the contribution from all candidate stencils, each with suitable nonlinear

weight. The weights are chosen so that in smooth regions, they are close to an optimal

linear weight which gives the highest possible order of accuracy of an upwind-biased linearly

stable scheme. Near shocks, however, those stencils which contain the shock are assigned

weights which are essentially zero. Thus WENO resembles a linear high order upwind biased

scheme in smooth regions, and ENO near shocks, with a smooth numerical flux function.

Another advantage of WENO, due to its smoothness of fluxes, is that convergence for gmooth

solutions can be proven. Also, convergence towards steady states is easier than ENO.

Jointly with Atkins, we have been performing investigation of the discontinuous Galerkin

(DG) finite element method for CFD and acoustic calculations in general geometry. In [1],

we discussed a discontinuous Galerkin formulation that avoids the use of discrete quadrature

formulas. The application is carried out for one and two dimensional linear and nonlinear

test problems. This approach requires less computational time and storage than conventional

implementations but preserves the compactness and robustness inherent in the discontinuous
Galerkin method.

Joint work with grlebacher and Hussaini on shock longitudinal vortex interaction prob-



lems, is carried out [11]. In this paper, we have studied the shock/longitudinal vortex in-

teraction problem in axisymmetric geometry. Linear analysis, shock fitting code, and shock

capturing ENO are all used, in different parameter regimes, to study various cases of nearly

linear regime, weakly nonlinear regime, and strong nonlinear regime. Vortex breakdown as

a function of Mach number ranging from 1.3 to 10 is studied, extending the range of exist-

ing results. For vortex strengths above a critical value, a triple point forms on the shock,

leading to a Mach disk. This leads to a strong recirculating region downstream of the shock.

A secondary shock forms to provide the necessary deceleration so that the fluid velocity can

adjust to downstream conditions at the shock.

Jointly with Gottlieb, we have further explored a class of high order TVD (total variation

diminishing) Runge-Kutta time discretization initialized by Shu and Osher in 1988, which

is suitable for solving hyperbolic conservation laws with stable spatial discretizations [17].

We illustrate with numerical examples that non-TVD but linearly stable Runge-Kutta time

discretization can generate oscillations even for TVD (total variation diminishing) spatial

discretization, verifying the claim that TVD Runge-Kutta methods are important for such

applications. We then explore the issue of optimal TVD Runge-Kutta methods for second,

third and fourth order, and for low storage Runge-Kutta methods.

In applications mixed hyperbolic-elliptic systems are sometimes encountered. Examples

are found in gas dynamics, nonlinear elasticity and Lorenz systems. Numerical solutions of

mixed type systems often suffer fi'om a lack of guidance in how to stabilize the solution in

elliptic regions with adequate viscosity. Most of the earlier work in this field use directly

hyperbolic schemes, e.g., first order Lax-Friedrichs scheme, and second order MarCormack

scheme. We proposed, in [24], a extension of hyperbolic flux-splitting idea to mixed type

systems. We have found ways to write a possibly elliptic flux as a sum of two hyperbolic

fluxes. Our approach works for all 2 x 2 and at least some higher order systems. With this

flux splitting, any successful hyperbolic numerical operator can be used separately on each

of the two hyperbolic fluxes. Stability is then obtained as in the hyperbolic case. Numerical

results in [24] for the van der Waals equation of gas dynamics, using ENO operator for

each of the split hyperbolic flux, illustrates the good potential for this approach: the phase

transitions can be correctly resolved and the method can be used as a tool to study the
evolution of elliptic regions.

For the discontinuous Galerkin method, the result of Jiang and Shu [20], [21] proves

a cell entropy inequality for the square entropy, which implies L2 stability in generxl and

convergence in some special cases, for arbitrary triangulations in any space dimension and

arbitrary order of accuracy, without even using nonlinear limiters. This result is much

stronger than the corresponding results for finite volume or finite difference schemes, which

typically require one space dimension, a convex physical flux and no more than second order

accuracy to prove the same entropy inequality.

Jointly with Cockburn, we have studied the Local Discontinuous Galerkin methods for

nonlinear, time-dependent convection-diffusion systems [6]. These methods are an exten-

sion of the Runge-Kutta Discontinuous Galerkin methods for purely hyperbolic systems to

convection-diffusion systems and share with those methods their high parallelizability, their



high-order formal accuracy,and their easyhandling of complicatedgeoumtries, for convec-
tion dominated problems. It is proven that for scalarequations, the l,ocal Discontinuous
Galerkin methods are L2-stablein tile nonlinearcase. Moreovc.r,in tile linear case, it is
shown that if l)olynomials of degree/_ are used, the methods are /c-th order accurate for

general triangulations; although this order of convergence is suboptimal, it is sharp for the

LDG methods. Preliminary numerical examples displaying the performance of the method
are shown.

Again jointly with Cockburn, we wrote the fifth paper in a series [7] in which we con-

struct and study the so-called Runge-Kutta Discontinuous Galerkin method for numerically

solving hyperbolic conservation laws. In this paper, we extend the method to multidimen-

sional nonlinear systems of conservation laws. The algorithms are described and discussed,

including algorithm formulation and practical implementation issues such as the numerical

fluxes, quadrature rules, degrees of freedom, and the slope limiters, both in the triangular

and the rectangular element cases. Numerical experiments for two dimensional Euler equa-

tions of compressible gas dynamics are presented that show the effect of the (formal) order

of accuracy and the use of triangles or rectangles, on the quality of the approximation.

Jointly with Hu, we have presented a discontinuous Galerkin finite element method for

solving the nonlinear Hamilton-aacobi equations [19]. This method is based on the Runge-

Kutta discontinuous Galerkin finite element method for solving conservation laws. The

method has the flexibility of treating complicated geometry by using arbitrary triangulation,

can achieve high order accuracy with a local, compact stencil, and are suited for efficient

parallel implementation. One and two dimensional numerical examples are given to illustrate

the capability of the method.

In the lecture note [26], we describe the construction, analysis, and application of ENO

(Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes

for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO

schemes are high order accurate finite difference schemes designed for problems with piece-

wise smooth solutions containing discontinuities. The key idea lies at the approximation level,

where a nonlinear adaptive procedure is used to automatically choose the locally smoothest

stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as

possible. ENO and WENO schemes have been quite successful in applications, especially

for problems containing both shocks and complicated smooth solution structures, such as

compressible turbulence simulations and aeroacoustics. This lecture note is basically self-

contained. It is out" hope that with this note and with the help of the quoted references, the

reader can understand the algorithms and code them up for applications. Sample codes are
also available from the author.

About high order essentially non-oscillatory (ENO) finite difference schemes, jointly with

Zeng, we have applied ENO method to the viscoelastic model with fading memory [29] The

memory term is treated by introducing new variables and rewrite the system by adding

more differential equations but without explicit memory terms. The appearance of the

memory terms regularizes the solution somewhat, and in many cases it is still a theoretically

open question whether shocks will develop from smooth initial data. We have performed



theoretical analysisabout tile linearizedsystemfor largetime, and haveappliedENO scheme
to study the nonlinear systemfor both local time and largetime. The high orde,"accuracy
and sharp, non-oscillatory shock transition allow us to ol)tain fine resolution for tens of
thousandsof time steps,and to study the shockint,cract.ionsafter the formation of shocks.

There are 29 paperspublished in this period acknowledgingsupport from this NASA
grant. Thesepapersare listed in the References.
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